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AbstrAct
Objective Diabetic nephropathy (DN) and diabetic 
retinopathy (DR) comprise major microvascular 
complications of diabetes that occur with a high 
concordance rate in patients and are considered to 
potentially share pathogeneses. In this case- control 
study, we sought to investigate whether DR- related single 
nucleotide polymorphisms (SNPs) exert pleiotropic effects 
on renal function outcomes among patients with diabetes.
Research design and methods A total of 33 DR- related 
SNPs were identified by replicating published SNPs and 
via a genome- wide association study. Furthermore, we 
assessed the cumulative effects by creating a weighted 
genetic risk score and evaluated the discriminatory and 
prediction ability of these genetic variants using DN cases 
according to estimated glomerular filtration rate (eGFR) 
status along with a cohort with early renal functional 
decline (ERFD).
Results Multivariate logistic regression models revealed 
that the DR- related SNPs afforded no individual or 
cumulative genetic effect on the nephropathy risk, eGFR 
status or ERFD outcome among patients with type two 
diabetes in Taiwan.
Conclusion Our findings indicate that larger studies would 
be necessary to clearly ascertain the effects of individual 
genetic variants and further investigation is also required 
to identify other genetic pathways underlying DN.

InTROduCTIOn
Nephropathy constitutes a frequent and 
serious complication of diabetes mellitus. 
Approximately 20%–40% of patients with 
type two diabetes (T2D) will develop diabetic 
kidney disease (DKD)1 and many will further 
progress to end- stage renal disease (ESRD) 
via a relentless decline in glomerular filtra-
tion rate (GFR).2 According to Yang et al,3 the 
increased prevalence of diabetic nephrop-
athy (DN) in Taiwan is the main cause of 
the increases in prevalence and incidence of 
ESRD. Notably, analysis of the international 
statistics collected in the US Renal Data 
System indicates that Taiwan has the highest 
incidence and the second highest prevalence 
of ESRD worldwide.4 5

Several risk factors for developing DN 
have been identified, such as age, duration 
of diabetes, albuminuria grade, early GFR 
decline, increased or variability of hemo-
globin A1c (HbA1c) and systolic blood pres-
sure (SBP), serum uric acid, presence of 
concomitant microvascular complications 
and positive family history.6 Additionally, 
hereditary components are considered to 

significance of this study

What is already known about this subject?
 ► Diabetic nephropathy (DN) and diabetic retinopathy 
(DR) comprise major microvascular complications 
of diabetes that occur with a high concordance rate 
in patients and are considered to potentially share 
pathogeneses.

 ► Genetic loci with pleiotropic effects, whereby one 
genetic locus can affect more than one phenotype, 
may underlie the association between DN and DR 
phenotypes.

What are the new findings?
 ► We identified a total of 33 DR- related single nucle-
otide polymorphisms (SNPs) by replicating SNPs 
on candidate genes previously identified through 
meta- analyses and genome- wide association study 
(GWAS) (10 SNPs were replicated) and through GWAS 
performed on subjects with DR with estimated glo-
merular filtration rate (eGFR) >60 mL/min/1.73 m2 
and albumin- to- creatinine ratio <300 mg/g (23 
SNPs were identified).

 ► These DR- related SNPs contributed no individual or 
cumulative genetic effect on the nephropathy risk, 
eGFR status or early renal functional decline out-
come among patients with diabetes in Taiwan, as 
confirmed by multivariate logistic regression models.

How might these results change the focus of 
research or clinical practice?

 ► Further evidence for the genetic pleiotropy of dia-
betic microvascular complications should be sought 
using a cohort of a larger size in Taiwan.

 ► Further investigation is required to identify other ge-
netic pathways underlying DN.
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Figure 1 Flow chart for three stages of study design. DN, 
diabetic nephropathy; DR, diabetic retinopathy; ERFD, 
early renal functional decline; SNP, single nucleotide 
polymorphism.

constitute a significant risk factor for DN.7 Numerous 
genes, such as TCF7L2, ACE and SHROOM3 were identi-
fied to be associated with DN through a candidate gene 
approach, genome- wide association study (GWAS)8 9 or 
meta- analysis.10 11 However, the genetic mechanism of 
DN remains unclear. Furthermore, research suggests that 
the presence of diabetic retinopathy (DR) may be consid-
ered as a vital clinical biomarker for the diagnosis of DKD 
among patients with diabetes and microalbuminuria 
(MAU).12 13 DN and DR comprise two major microvas-
cular complications of diabetes and occur with a high 
concordance rate in patients with diabetes. Studies have 
suggested that these two diabetic complications might 
share common pathogeneses, such as glucose metabo-
lism, angiogenesis, inflammation and oxidative stress.14 
Therefore, genetic loci with pleiotropic effects, whereby 
one genetic locus can affect more than one phenotype, 
may underlie the association between DR and DKD 
phenotypes.15 However, to date only a few genetic poly-
morphisms have been reported to be associated with 
these two complications, including interleukin (IL)-1016 
and SLC2A1.17

The aim of this study is to investigate whether DR- related 
single nucleotide polymorphisms (SNPs) exert a pleio-
tropic effect on renal function outcomes among patients 
with diabetes. The DR- related SNPs were identified 
by replicating published SNPs and via GWAS among 
patients with T2D in Taiwan. Furthermore, we assessed 
their cumulative effects by creating a weighted genetic 
risk score (wGRS) and evaluated the discriminatory and 
predictive ability of these genetic variants using DN cases 
according to estimated GFR (eGFR) status along with a 
cohort with early renal functional decline (ERFD) in the 
Taiwanese population.

MaTeRIals and MeTHOds
The present study was broadly divided into three stages: 
stage I, DR- related genetic marker selection, selection of 
genetic markers related to DR via the GWAS method and 
replication of reported SNPs among 206 DR cases and 
206 non- DR controls; stage II, verification of DR- related 
SNPs by using DN cases, investigation of the effect of 
DR- related genes in diabetes by using 567 DN cases 
(eGFR <60 mL/min/1.73 m2) and 909 non- DN controls 
(eGFR >90 mL/min/1.73 m2) and stage III: verification 
of DR- related SNPs on diabetic cohort, verification of 
DR- related SNPs by using 417 subjects with ERFD (eGFR 
decline >3.3 mL/year) and 417 subjects without ERFD. 
No overlap was allowed for the subjects among the three 
stages. Detailed information for study population selec-
tion for each stage is described in the ‘Study population’ 
section. An overall flow chart is shown in figure 1.

study population
Subjects with T2D have been enrolled at the China 
Medical University Hospital since 2010, and were 
recruited from the Taiwan Biobank. Detailed information 

about the number of subjects from different sources at 
each stage is provided in online supplementary table S1. 
Informed consent was obtained from all participants. 
The study was conducted in accordance with the Decla-
ration of Helsinki.

DR cases for genetic marker selection
Among these subjects, 1947 subjects without retinop-
athy (non- DR group) and 245 subjects with retinopathy 
(DR group) exhibited eGFR >60 mL/min/1.73 m2 and 
albumin- to- creatinine ratio (ACR) <300 mg/g. The clin-
ical information was collected via questionnaires, while 
the retinopathy status was self- reported. After pairwise 
matching according to HbA1c and disease duration, 206 
DR and 206 non- DR cases were used for the selection of 
DR- related SNPs. The flow chart for patient selection is 
shown in online supplementary figure S1(a).

DN cases for replication
We used a cross- sectional study design to investigate 
the effect of DR- related genes on DN. After excluding 
412 subjects with DR for marker selection, a total of 
1476 subjects with T2D, including 567 subjects with 
eGFR <60 mL/min/1.73 m2 and 909 subjects with eGFR 
>90 mL/min/1.73 m2, were selected from our database. 
None of these subjects exhibited DR.

Cohort cases with rapid renal function decline for replication
We used a nested case- control study design to investi-
gate the effect of DR- related genes on ERFD. A total of 
950 subjects with T2D had available follow- up informa-
tion from our database. After 1:1 matching according 
to gender, disease duration, HbA1c and eGFR, two 
groups of 417 subjects each were identified who exhib-
ited or did not exhibit ERFD during the follow- up period 
(1.24±1.10 and 2.86±2.16 years of follow- up for ERFD 
and non- ERFD groups, respectively). ERFD was defined 
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Figure 2 Flow chart for selection of genetic markers. DR, 
diabetic retinopathy; GWAS, genome- wide association 
study; SNP, single nucleotide polymorphism.

as >3.3 mL/min/1.73 m2 decline in eGFR per year.18 The 
Modified Diet in Renal Disease equation19 was used to 
estimate eGFR. The flow chart for patient selection is 
shown in online supplementary figure S1(b).

data collection
Data regarding age, gender, age at T2D diagnosis and 
ocular history were collected from questionnaires. For 
each patient, SBP, diastolic blood pressure (DBP) and 
body mass index (BMI) were determined, and blood 
samples were collected by venipuncture for genomic 
DNA isolation and serological tests, including fasting 
glucose and HbA1c, at the time of enrollment in the 
study.

Genotyping, imputation, quality control and population 
substructure
Genomic DNA extracted from peripheral blood leuko-
cytes with the Genomic DNA kit (Qiagen, California, 
USA) was genotyped using various platforms including 
Illumina HumanHap550- Duo BeadChips, Affymetrix 
Axiom genome- wide CHB array, and Affymetrix Axiom 
genome- wide TWB array, according to standard quality 
control procedures. Detailed information of the array 
used at each stage is provided in online supplementary 
table S1. Because the GWAS results were obtained using 
different genotyping platforms, genotype imputations 
were done separately in the three platforms and were 
performed according to a three- step genotype imputa-
tion approach. First, we used SHAPEIT20 to prephase 
the study genotypes into full haplotypes. Second, 
we performed imputation using IMPUTE2 (http:// 
mathgen. stats. ox. ac. uk/ impute/ impute_ v2. html) and 
the phase I 1000 Genomes Project reference panel (June 
2011 interim release) consisting of 1094 phased individ-
uals from multiple ancestry groups (The 1000 Genomes 
Project Consortium, 2010). Third, we used GTOOL soft-
ware (http://www. well. ox. ac. uk/~ cfreeman/ software/ 
gwas/ gtool. html) to homogenize strand annotation by 
merging the imputed results obtained from each set of 
genotyped data.

Genotype and imputed genotype data were quality 
controlled (QC), and SNPs were excluded from further 
analysis if (1) only one allele appeared in cases and 
controls; (2) the total call rate was <95% for both cases 
and controls; (3) the minor allele frequency was <0.05 
in the controls (the Han Chinese population); (4) they 
significantly departed from Hardy- Weinberg equilib-
rium proportions (p<0.05); (5) they had low imputation 
quality (info<0.4)21 and (6) excessive identity by descent 
(π>0.1875), which represented first- degree or second- 
degree relatives.

Population substructure was evaluated in the merged 
dataset using genotyped SNPs that passed QC with refer-
ence populations from the 1000 Genomes Project and 
based on our own samples by multidimensional scaling 
(MDS) analysis,22–24 using the PLINK module. The MDS 
method detects meaningful underlying dimensions that 

explain observed genetic distance. During the MDS of 
matrices, the graphs of mutual arrangement of studied 
populations in the two- dimensional space were obtained 
(see online supplementary figure S2 (a)(b)). Also, popu-
lation outliers were evaluated by visual examination of 
MDS plots. And the components were evaluated based 
on the scree plot (see online supplementary figure S2 
(c)). The first 10 MDS components which calculated 
based on our own samples were included as covariates in 
association test models to minimize spurious associations 
and maximize the detection power to identify genuine 
associations.

Genetic marker selection
The genetic markers related to DR status were selected 
using two methods: GWAS and a candidate gene 
approach to replicate reported SNPs. Detailed informa-
tion is described in the following sections “Genome- wide 
association study” and “Replication”, and the flow chart 
for genetic marker selection is presented in figure 2.

Genome-wide association study
To obtain a robust prioritization of SNPs for use in 
predictive models, we used the bootstrapping method25 
in GWAS. We resampled the data 1000 times, producing 
a SNP ranking for each bootstrap sampling based on p 
values from an additive model adjusting for the first 10 
MDS components using PLINK 1.9.22 Each bootstrap 
sample was generated by randomly selecting 80% of the 
individuals with replacement. For each bootstrap sample, 
the top 300 SNPs and those consistently present in 20% of 
bootstrapping results were identified. A total of 26 SNPs 
identified by GWAS were enrolled into model building. 
The Manhattan plot (see online supplementary figure 
S3) and quantile- quantile plot (see online supplemen-
tary figure S4) based on 206 DR cases and 206 non- DR 
controls are presented as online supplementary materials. 
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There was no indication of inflation of test statistics, with 
the lambda GC value being equal to 1.00713.

Replication
A total of 49 genetic loci (see online supplementary 
table S2) that were reported from published papers were 
replicated in the 206 DR cases and 206 non- DR controls 
mentioned in the ‘DR cases for genetic marker selec-
tion’ section. For the un- typed SNPs, imputation was 
performed, and the genotype data were quality controlled 
as described above. A 100 bootstrapping subsampling 
method was also applied. The significant SNPs (p values 
<0.05 under the additive inherited genetic model) were 
ranked in each bootstrapping subsampling and 144 SNPs 
located on 11 loci consistently present in >80% of boot-
strapping results were selected. After removing highly 
correlated SNPs (D′>0.8), 18 SNPs were enrolled into 
model building.

dR-related GRs calculation and prediction model building
The wGRS in the prediction model was calculated among 
the DR cases. Among 44 SNPs (26 SNPs from GWAS and 
18 from replication), 33 SNPs (23 SNPs from GWAS and 
10 from replication) remained significant in the logistic 
regression model (with backward selection) after adjusting 
for low- density lipoprotein (LDL) and ACR. The genotype 
information for 33 SNP is shown in online supplementary 
table S3. These 33 SNPs were used to calculate the wGRS. 
Detailed description of the wGRS calculation has been 
reported previously26 27 ; the formula is as follows: wGRS
=33/77.189×((rs767763×2.025)+(rs16958803×1.992)+(r
s4129423×2.036)+(rs1559438×1.287)+(rs62324351×1.92
6)+(rs3791242×2.587)+(rs77625440×2.289)+(rs5617030
5×1.769)+(rs10055994×5.019)+(rs28610956×1.457)+(rs1
2076129×2.795)+(rs4665299×1.950)+(rs6433562×2.253)
+(rs12991409×2.191)+(rs11889778×2.160)+(rs75759133
×1.362)+(rs7374667×1.665)+(rs34766496 ×2.453)+(rs20
0796238×1.809)+(rs62328468×2.080)+(rs6841985×1.966
)+(rs6554985×3.221)+(rs35019626×1.931)+(rs60421526
×3.803)+(rs73357792×2.014)+(rs12680033×2.463)+(rs11
318592×1.110)+(rs4618795×1.990)+(rs7940618×1.870)+
(rs1263663×3.007)+(rs75631519×4.166)+(rs1894151×5.
049)+(rs6065597×1.494)). Furthermore, the DR- related 
wGRS was calculated for each individual among the DN 
cases and the ERFD cohort. For investigating the cumu-
lative effect of DR- related wGRS on DN complications, 
subjects were divided into three groups according to the 
distribution of wGRS in DN cases and ERFD cohort.

statistical analysis
Continuous data are presented as means with SD, and 
categorical data are presented as proportions. We used 
t- test to compare mean values of continuous variables, and 
χ2 test to compare the frequencies of categorical variables 
between two groups. We estimated ORs and 95% CIs of 
variables by using logistic regression to examine the inde-
pendent association between GRS and the DN or ERFD 
end point. We used three steps to select independent 

variables that result in a ‘best’ model. First, we conducted 
a univariate analysis of each variable. Second, we selected 
variables with p<0.05 as a candidate in the multivariate 
model. Third, we constructed a multivariate model with 
the candidate variables by using the backward selection 
method. Receiver operating characteristic (ROC) curves 
were generated to quantify the predictive accuracy of 
the models, and the area under the curve (AUC) was 
used to assess the discriminatory ability of the models. 
The statistical significance of the difference between the AUC 
values was determined using Z statistics.28 All statistical 
analyses were performed using SPSS software V.21.0 for 
Windows (IBM, Armonk, New York, USA) or R V.3.4.4 (R 
Core Team, 2018). Additionally, to minimize the mean 
of paired distance on matching variables for each case 
and control pair, we performed ‘pairmatch’ in R, which 
retained most of the cases in our database and matched 
controls.29

ResulTs
dR-related genetic marker selection
We identified a total of 18 DR- related SNPs by repli-
cating published SNPs and 26 through GWAS by using 
the matched 206 DR cases and 206 non- DR controls. The 
demographic information of subjects with DR is shown in 
online supplementary table S4. Then, we used a logistic 
regression model with backward selection to select the 
SNPs for calculating the wGRS after adjusting for LDL 
and ACR. A total of 33 SNPs presented a p value <0.1 and 
were included in GRS. The genotype information for 
each SNP is shown in online supplementary table S3. 
The mean number of risk alleles was 35.87±4.44 (range 
24–47), and the mean wGRS was 39.05±4.30 (range 
27.66–48.63). The distribution of risk alleles and wGRS is 
shown in online supplementary figure S5.

Verification of dR-related snPs using dn cases
We enrolled a total of 1476 subjects with T2D including 
567 with eGFR <60 mL/min/1.73 m2 (as cases) and 909 
with eGFR >90 mL/min/1.73 m2 (as controls). The male- 
to- female ratios were 1.01 (457/452) for the control 
group and 1.26 (316/251) for the case group (p=0.041 by 
Pearson’s χ2 test). DN cases were significantly older, with 
long diabetes duration, having higher BMI, SBP and ACR 
values and lower HbA1c, DBP, high- density lipoprotein 
(HDL) and LDL compared with those of the controls 
(p=0.016, 0.002 and <0.001 for BMI, HbA1c and all other 
parameters, respectively; table 1). The individual effect 
of 33 DR- SNPs on eGFR status is shown in online supple-
mentary table S5.

To determine the impact of the cumulative effect of 
DR- related SNPs on DN, a logistic regression model was 
used. wGRSs were divided into three groups based on the 
number of risk alleles. (The distribution of risk alleles 
and wGRS is shown in online supplementary figure 
S6(a)). All significant covariates in the univariate model 
and wGRS (forced in) were retained in the model. With 
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Table 1 Demographics of patients with diabetes by eGFR

eGFR* >90
(n=909)

eGFR <60
(n=567) P value†

Gender

  Male 457 (50.3%) 316 (55.7%)

  Female 452 (49.7%) 251 (44.3%) 0.041‡

Age (years) 54.62 (10.22) 69.31 (10.47) <0.001§

DM duration (years) 5.90 (5.69) 10.02 (8.80) <0.001§

BMI (kg/m2) 25.48 (4.32) 26.06 (3.99) 0.016‡

HbA1c (%) 7.71 (1.54) 7.45 (1.52) 0.002‡

SBP (mm Hg) 127.61 (16.55) 135.68 (18.66) <0.001§

DBP (mm Hg) 77.62 (11.05) 75.45 (12.34) 0.001‡

HDL (mg/dL) 49.58 (13.46) 46.64 (13.71) <0.001§

LDL (mg/dL) 114.35 (34.48) 106.80 (37.10) <0.001§

eGFR (mL/min/1.73 m2) 115.17 (24.56) 40.26 (15.08) 0.001‡

Urine creatinine (mg/dL) 129.45 (220.83) 110.50 (64.27) 0.063

ACR (mg/g) 67.70 (307.72) 578.03 (1619.15) <0.001§

Values are presented as N (%) or mean±SD.
*The Modified Diet in Renal Disease equation was used to estimate eGFR.
†P value for χ2 test or two- sample independent t- test.
‡Represents a p value <0.05.
§Represents a p value <0.001.
ACR, albumin- to- creatinine ratio; BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular 
filtration rate; HbA1c, hemoglobin A1c; HDL, high- density lipoprotein; LDL, low- density lipoprotein; SBP, systolic blood pressure.

Table 2 The cumulative effect of DR- related SNPs on patients with diabetes with different eGFR status in the multivariate 
logistic regression model

eGFR* >90
N (%)

eGFR <60
N (%) OR 95% CI P value

Age (years) 1.18 1.15 to 1.21 <0.001†

BMI (kg/m2) 1.10 1.04 to 1.16 0.001‡

HDL (mg/dL) 0.98 0.97 to 1.00 0.050

LDL (mg/dL) 1.00 0.99 to 1.00 0.135

ACR (mg/g) 1.001 1.001 to 1.002 <0.001†

Genetic risk score       

  Q1 (<37.74) 251 (34.5) 147 (31.3) Ref. Ref. Ref.

  Q2 (37.74 to 40.42) 226 (31.1) 174 (37.1) 1.65 1.01 to 2.72 0.048‡

  Q3 (>40.42) 250 (34.4) 148 (31.6) 1.20 0.72 to 2.01 0.483

The genetic risk score was calculated based on 33 SNPs listed in online supplementary table S2.
*The Modified Diet in Renal Disease equation was used to estimate eGFR.
†Represents a p value <0.001.
‡Represents a p value <0.05.
ACR, albumin- to- creatinine ratio; BMI, body mass index; DR, diabetic retinopathy; eGFR, estimated glomerular filtration rate; HDL, high- 
density lipoprotein; LDL, low- density lipoprotein; Q, quantile; Ref, reference; SNP, single nucleotide polymorphisms.

a backward selection, age, BMI, HDL, LDL, ACR and 
wGRS were selected into the final model. Compared with 
individuals in the lowest range of wGRS, the ORs with 
95% CIs for those in the middle and high range were 
1.65 (1.01 to 2.72) and 1.20 (0.72 to 2.01), respectively. 
These results suggest that the 33 DR- related SNPs exert 
no cumulative effect on the eGFR status among patients 
with T2D (table 2). To assess the discriminatory ability of 

the models, the AUC was calculated as 0.88 (95% CI 0.85 
to 0.91). However, no significant increase in the AUC 
value was observed after adding genetic factors (wGRS) 
(Figure 3A).

Verification of dR-related snPs using eRFd cases
A total of 950 subjects with T2D had follow- up 
information. After 1:1 matching based on gender, 
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Figure 3 Receiver operating characteristic (ROC) curve and area under the curve (AUC) in the patients with diabetes. ROC 
curves and AUC of the models built for estimated glomerular filtration rate status (A) and early renal functional decline outcome 
(B) (AUC=0.879 and 0.701, respectively). The diagonal line indicates zero predictive value of the model. GRS, genetic risk score.

Table 3 Demographics of patients with diabetes by ERFD* status

Non- ERFD (n=417) ERFD (n=417) P value†

Gender

  Male 258 (61.9%) 257 (61.6%)

  Female 159 (38.1%) 160 (38.4%) 0.943

Age (years) 56.15 (10.58) 57.99 (9.99) 0.010‡

DM duration (years) 8.32 (7.23) 8.97 (6.39) 0.225

Follow- up duration (years) 2.86 (2.16) 1.24 (1.10) <0.001§

BMI (kg/m2) 26.04 (3.67) 26.22 (3.86) 0.501

HbA1c (%) 7.32 (1.53) 7.48 (1.31) 0.110

SBP (mm Hg) 129.58 (19.56) 135.39 (18.33) <0.001§

DBP (mm Hg) 79.08 (13.00) 82.91 (11.60) <0.001§

HDL (mg/dL) 49.88 (12.86) 48.09 (13.93) 0.054

LDL (mg/dL) 115.63 (34.70) 105.16 (32.72) <0.001§

eGFR (mL/min/1.73 m2) 88.70 (28.09) 90.52 (28.20) 0.352

Urine creatinine (mg/dL) 141.68 (91.63) 120.52 (72.73) 0.001‡

ACR (mg/g) 96.12 (353.09) 157.47 (472.41) 0.046*

Values are presented as N (%) or mean±SD.
*Early renal function decline was defined as >3.3 mL/min/1.73 m2 decline in the eGFR per year.
†P value for χ2 test or two independent t- tests.
‡Represents a p value <0.05.
§Represents a p value <0.001.
ACR, albumin- to- creatinine ratio; BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular 
filtration rate; ERFD, early renal functional decline; HbA1c, hemoglobin A1c; HDL, high- density lipoprotein; LDL, low- density lipoprotein; SBP, 
systolic blood pressure.

disease duration, HbA1c and eGFR at baseline, 417 
exhibited and 417 did not exhibit ERFD during the 
follow- up period (1.24±1.10 and 2.86±2.16 years of 
follow- up for ERFD and non- ERFD groups, respec-
tively). However, on matching according to disease 
duration, the subjects in the ERFD group were older 
than those in the non- ERFD group (mean (SD) age 

of 57.99 (9.99) vs 56.15 (10.58), respectively). More-
over, SBP and DBP were significantly higher, and 
LDL was lower in the ERFD group when compared 
with those in the non- ERFD group (p<0.001 for all 
parameters; table 3). The individual effect of 33 
DR- SNPs on ERFD status is shown in online supple-
mentary table S6.
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Table 4 The cumulative effect of DR- related SNPs on diabetic patients with ERFD* outcomes in the multivariate logistic 
regression model

Non- ERFD
N (%)

ERFD
N (%) OR 95% CI P value

Follow- up duration (years) 0.59 0.51 to 0.67 <0.001†

Urine creatinine (mg/dL) 0.998 0.996 to 1.000 0.074

Genetic risk score       

  Q1 (<37.58) 111 (32.6) 117 (34.0) Ref. Ref. Ref.

  Q2 (37.58 to 40.23) 105 (30.8) 124 (36.0) 1.16 0.76 to 1.77 0.502

  Q3 (>40.23) 125 (36.7) 103 (29.9) 0.89 0.58 to 1.37 0.597

Values are presented as N (%) or mean±SD.
The genetic risk score was calculated based on 33 SNPs listed in online supplementary table S2.
*Early renal function decline was defined as >3.3 mL/min/1.73 m2 decline in the eGFR per year.
†Represents a p value <0.001.
DR, diabetic retinopathy; eGFR, estimated glomerular filtration rate; ERFD, early renal functional decline; Q, quantile; Ref, reference; SNP, 
single nucleotide polymorphisms.

To determine the impact of the cumulative effect of 
DR- related SNPs on ERFD, a logistic regression model 
was used. wGRSs were divided into three groups based 
on the number of risk alleles among subjects. (The 
distribution of risk alleles and wGRS is shown in online 
supplementary figure S6(b).) All significant covariates in 
the univariate model and GRS (force in) were included 
in the model. With backward selection, follow- up time, 
urine creatinine and wGRS were selected into the final 
model. Compared with individuals in the lowest range 
of wGRS, the ORs with 95% CIs for those in the middle 
and high range were 1.16 (0.76 to 1.77) and 0.89 (0.58 
to 1.37), respectively. These results suggested that the 
33 DR- related SNPs afforded no cumulative effect on 
the ERFD risk (table 4). The AUC value for the discrim-
inatory ability of the models was 0.70 (95% CI 0.6 to 
0.75). Additionally, no significant increase in the AUC 
value was observed after adding genetic factors (wGRS) 
(figure 3B).

dIsCussIOn
Here, we investigated whether DR- related SNPs affect 
renal function among patients with diabetes. We iden-
tified a total of 33 DR- related SNPs by replicating SNPs 
on candidate genes previously identified through meta- 
analyses and GWAS (10 SNPs were replicated) and 
through GWAS performed on our subjects with DR with 
eGFR >60 mL/min/1.73 m2 and ACR <300 mg/g (23 
SNPs were identified). The DR- related SNPs contrib-
uted no individual or cumulative genetic effect on the 
nephropathy risk, eGFR status or ERFD outcome among 
patients with diabetes, as confirmed by multivariate 
logistic regression models.

Current literature suggests that the presence of one 
pre- existing microvascular complication (retinopathy 
or nephropathy) may contribute to the development of 
another.30 31 Retinal vascular geometry can independently 
predict the incidence of renal dysfunction and may be a 
useful tool to identify individuals at high risk for renal 

disease early in the course of type one diabetes (T1D).32 
El- Asrar et al33 reported that patients with T1D and DR 
were 13.39 times more likely to develop DKD than those 
without DR. Moreover, Yang et al12 reported that the 
urine proteome specific for eye damage could predict 
chronic renal insufficiency (eGFR, 60 mL/min/1.73 m2) 
in a 5.3 years prospective cohort for T2D.

However, only a few genetic reports support possible 
pleiotropy between DN and DR.16 17 34 35 Hosseini et al36 
tested previous suggestive signals for DN for association 
with severe DR, but none of the loci showed a signifi-
cant association after multiple testing. In the present 
study, we identified DR- related SNPs from GWAS and 
performed replication by using patients with DR and 
MAU among the Han population in Taiwan. In addition, 
some of the identified genes, such as guanylate cyclase 1 
soluble subunit beta 1, signal transducer and activator of 
transcription-4 and G protein- coupled receptor 35 were 
reportedly related to renal perfusion and renin release,37 
cell proliferation and differentiation38–40 and vascular 
endothelial relaxation.41 These pathophysiological 
associations may be related to nephropathy or diabetic 
complications42–46; however, none of the genetic variants 
significantly correlated with DN risk among patients with 
T2D in previous studies47 or the present study. This may 
be owing to limited statistical power or might suggest the 
lack of genetic pleiotropy effect among these two tested 
diabetic complications.

We recognize several limitations that may contribute 
to the lack of significant findings in the present study. 
First, a limited number of DR- related SNPs were identi-
fied, which may be due to the small sample size for the 
process of genetic marker selection, although a matched 
case- control study design was used in the present study 
to control for potential confounding factors. However, 
the effect sizes obtained from such matching may differ 
from the effect sizes in the whole sample. Therefore, we 
performed an analysis in which we replicated 33 identi-
fied DR- SNPs in a larger population (234 DR and 2368 
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non- DR), from which 3 DR- related SNPs (rs6841985 
from GWAS; rs1559438 and rs56170305 from replica-
tion) remained significantly related to DR status. The 
wGRS was calculated based on the effect sizes for the 
three DR- related SNPs obtained from the larger popula-
tion. However, these three DR- related SNPs still contrib-
uted to no individual (see online supplementary table 
S7) or cumulative genetic effect on the nephropathy risk, 
eGFR status or ERFD outcome in the multivariate logistic 
regression models (see online supplementary table S8−9). 
Second, the validity of association (with DR) at many of 
these loci is unconfirmed or lacks robust replication. 
This may be due to differences among studies regarding 
the phenotype definition, the method used to identify 
retinopathy, ethnic population or other confounding 
factors. Although the self- reported DR status was used 
in the present study, we confirmed high consistency in 
our limited database between the self- reported DR status 
and that reported by an ophthalmologist (n=749; accu-
racy: 612/749=81.7%). Furthermore, a high validity of 
self- report of laser treatments of DR, as compared with 
fundus photography grading, was observed in the EDIC 
study T1D cohort.48 Third, inadequate statistical power 
may have contributed to the lack of significant associa-
tions between single loci and eGFR status and ERFD 
outcome. Dichotomized outcomes (for eGFR and ERFD) 
were used in the present analyses, which may reduce the 
power as compared with the analysis of the outcomes as 
quantitative measures. However, when the continuous 
quantitative eGFR was considered as the outcome, and 
the continuous quantitative wGRS was used as predictor 
in the linear regression models (with the sample size 
increased to 3100), no significant effect of wGRS was 
observed on eGFR outcome even after controlling for 
other potential confounding factors (see online supple-
mentary table S10). Moreover, the logistic regression 
models based on conventional variables have high 
discriminatory power with AUC of 0.88 (on eGFR status) 
and 0.70 (on ERFD risk) in this study, and inclusion of 
genetic predictor variants (wGRS) did not significantly 
change the AUCs. Based on these results, there could be 
either no pleiotropic effect between these two diabetic 
complications or the effect sizes of DR- related SNPs on 
eGFR status and ERFD outcomes may be small. There-
fore, larger sample sizes are warranted in these two eval-
uations. The use of modified equations for calculating 
eGFR based on Asian populations49 may also be worth 
considering in future studies. Lastly, the information of 
medical use, such as antihypertension or statin therapy, 
was not collected for the subjects during enrollment. 
This is potentially relevant to blood pressure and lipids 
levels and might have confounded the results.

COnClusIOns
In conclusion, we identified no individual or cumulative 
genetic effect of the DR- related SNPs on nephropathy 
risk, eGFR status or ERFD outcome among patients with 

diabetes in Taiwan using multivariate logistic regression 
models. Further evidence for the pleiotropy of microvas-
cular complications should be sought using a cohort of a 
larger size in the near future.
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